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Abstract

This study presents a comparative analysis of two advanced analytical methods—the Elzaki Transform Ho-

motopy Perturbation Method (ETHPM) and the Fractional Reduced Differential Transform Method (FRDTM)—for

solving nonlinear fractional partial differential equations (FPDEs) arising in biological population dynam-

ics. After establishing the mathematical foundations of fractional calculus, the Elzaki transform, and homo-

topy perturbation theory, we demonstrate the applicability of both methods to FPDEs modeling population

growth and swarm behavior. Our results reveal that ETHPM and FRDTM yield highly accurate approxi-
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mate solutions, underscoring their efficacy as computational tools for complex biological systems. The study

highlights the broader implications of these fractional-order models in ecology and population dynamics,

bridging theoretical mathematics with practical applications in life sciences. Through systematic compar-

isons, we provide insights into the strengths and limitations of each method, offering valuable guidance for

researchers working with nonlinear fractional systems in biological contexts.

Keywords: Fractional-type derivatives, Elzaki transform homotopy perturbation method, fractional

reduced differential transform method, Riemann–Liouville fractional integral

1. Introduction

Fractional calculus has gained significant attention in recent years because of its ability to describe

complex phenomena in various scientific and engineering disciplines more accurately than classical integer-

order calculus. In the realm of biological population dynamics, fractional-order models offer a more realistic

approach to capture the memory and hereditary characteristics of populations, which are often overlooked

in classical models [1]. The Elzaki transform method has emerged in the past decade as one of the potential

tools of mathematics to solve fractional-order differential equations [2]. Due to the simplicity and efficiency

in the conversion of fractional differential equations into (ODEs) [4], this method has been applied to various

problems in science and engineering [5]. In this work, we will present a two-dimensional fractional order

time model of biological population by means of the Elzaki transform technique[6]. The model is designed

to capture the intricate dynamics of biological populations by incorporating fractional-order derivatives to

account for memory and hereditary effects [7]. We aim to derive an analytical solution to this model using

the Elzaki transform method [8], providing a comprehensive understanding of the temporal and spatial

evolution of the biological population under consideration. The analytical solution obtained will serve

as a valuable tool for predicting and analyzing the behavior of biological populations, which can have

significant implications in ecology, epidemiology, and conservation biology [9]. Furthermore, the proposed

model and solution will be validated through numerical simulations and comparisons with existing models

to demonstrate their effectiveness and accuracy [10].

It is normally argued by the biological scientists that emigration [11], otherwise known as dispersal

[12], forms a critical determinant of the species populations [13]. The spatial distribution of a species is

described by three primary functions
→̇
x = (ẋ, l̇) within a given region D where l ≥ 0. These functions detail

the diffusion velocity, u̇(
→̇
x , l̇) the population density q̇(

→̇
x , l̇) and supply ġ(

→̇
x , l̇). Specifically, q̇(

→̇
x , l̇) indicates
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the rate of change in population due to births and deaths per unit volume, while v̇(
→̇
x , l̇) is a number denoting

the number of individuals. Moreover, u̇(
→̇
x , l̇) provides the mean velocity of people describing the flux of the

population from one place to another [14]. For any C ⊆ E sub-region, the functions q̇,
→̇
v , and ġ should agree

with each other [15].

dµ

dlµ

∫
C

q̇ dU +
∫
∂C

q̇
→̇
v · n̂ dA =

∫
C

ġ dU, (1)

Here n̂ represents the unit normal vector pointing outward from the boundary ∂C of C [16]. This princi-

ple asserts that the rate of change of the population within C combined with the rate at which animals exit C

through its boundary, equals the rate at which animals enter C [17]. Gurtin and Maccamy [18] demonstrated

this by imposing certain conditions. Assume the result to be as follows:

ġ = ġ(q̇),
→̇
v = −k(q̇)∇q̇. (2)

If k(q̇) > 0 when q̇ > 0 and ∇ denotes the Laplace operator, then the resulting equations for the density of q̇

are given by the following two-dimensional nonlinear degenerate parabolic PDEs.

q̇αl = ϕ(q̇)ẋẋ + ϕ(q̇)ẏẏ + ġ(q̇), l ≥ 0, ẋ, ẏ ∈ C. (3)

Gurney et al. [17] applied a particular instance of ϕ(q̇) to simulate animal population dynamics [19].

Population movement [20] is influenced by either adult individuals being displaced by newcomers or by

younger individuals [21] departing from their birthplaces to create their own [22] reproductive territories. In

both scenarios, it is assumed that the movement [23] occurs to a nearby unoccupied area. In the presented

model, movement predominantly occurs along the population density gradient, making the model more

suitable for high-density population areas than low-density ones. They analyzed a rectangular region where

an animal could either stay in its current location or migrate from an area of high density to one of lower

density. In these scenarios, the probability distribution is determined by the gradient magnitude of the

population density at each grid point [24].

This model then yields equation (1). If ϕ(q̇) = q̇2, the equation becomes:

q̇αl = q̇2
˙̇xẋ + q̇2

ẏẏ + ġ(q̇), l ≥ 0, ẋ, ẏ ∈ C (4)

Given the initial condition q̇(ẋ, ẏ, 0), examined several characteristics of equation (4), including Hölder

estimates of its solutions, by Y.G. Lu [18]. Two constitutive models for ġ can be based on the Malthusian

law:
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ġ(q̇) = µq̇, (µ = constant) (5)

and the Verhulst law:

ġ(q̇) = µ1q̇ − µ2q̇2. (6)

where µ1 and µ2 are positive constants, which represents the Verhulst Law [12]. We extend ġ to a more

generalized form defined as:

ġ(q̇) = hq̇α(1 − rq̇β) (7)

which yields

q̇αl = q̇2
χ̇χ̇ + q̇2

ẏẏ + hq̇α(1 − rq̇β), l ≥ 0, ẋ, ẏ ∈ C (8)

where α, β, h, and r are real-valued constants. It is important to note that the Malthusian law and the Verhulst

law are specific cases derived when certain conditions are applied:

1. Malthusian law: h = µ, α = 1, r = 0

2. Verhulst law: h = µ, α = β = 1, r = γµ

2. Preliminaries

Definition 2.1. A real function g(l), l > 0, is considered to belong to the space Dα, α ∈ R if ∃ a real number

(q > α) S.t g(l) = lqg1(l), where g1 ∈ D[0,∞]. It is evident that, Dα ⊂ Dβ if β ≤ α [19].

Definition 2.2. A function g(l), l > 0, is considered to be in the space Dm
a , m ∈ N∪ {0}, if g(m) ∈ Dα [19]. In

this context, we will introduce some fundamental concepts of fractional calculus and natural transforms.

Definition 2.3. The left-sided Riemann-Liouville fractional integral of a is greater then zero function is

given by the following expression [15]:
Ja f (x) = 1

Γ(a)

∫ x
0 (x − t)a−1 f (t)dt, a > 0, x > o

J0 f (x) = f (x), x = 0
(9)

The application of the Riemann-Liouville fractional derivative approach to model the real-world phe-

nomena described by fractional differential equations suffers from certain disadvantages. Caputo and Mainardi
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[16] have, in their investigation within the theory of viscoelasticity, introduced a modified fractional differ-

entiation operator C to extend the abilities of the Riemann-Liouville fractional derivative in modeling real

applications.

Definition 2.4. The Caputo definition of the fractional derivative of order m of function f (t) is described by

[17]:

GaT a f (x) = T m−aGm f (x) =
1

Γ(m − a)

∫ x

0
(x − t)m−a−1 f (m)(t)dt, (10)

for m − 1 < a < m, m ∈ N, and f ∈ Cm, a > 0, x > 0.

Lemma 2.1. If m − 1 < a ≤ m, m ∈ N, and f ∈ Cm
µ , µ ≥ −1, then

GaT a f = f (x), x > 0

T aGa f = f (x) −
∑m

k=0 f (k)(0+) xk

k! , x > 0
(11)

The present work, the Caputo FD has been chosen for its flexibility in accommodating standard ini-

tial and boundary conditions while formulating problems of physical. Other important properties of the

fractional derivatives are given in [17, 18].

3. Elzaki Transform Homotopy Perturbation Method (ETHPM)

Here one will learn how the ETHPM algorithm is used to solve both types of fractional partial differential

equations: those that are linear and nonlinear.

Gηδu̇(µ, δ) + Tu̇(µ, δ) + Nu̇(µ, δ) = Φ(µ, δ), µ ≥ 0, r − 1 < η ≤ r (12)

where Gηδ =
∂η

∂δη denotes the order η fractional derivative, T is a linear operator, F is a Non-linear

function, and the source function is Φ.


u(µ, 0) = Φ(µ), 0 < η ≤ 1,

u(µ, 0) = Φ(µ),

∂u(µ,0)
∂δ = Φ(µ), 1 < η ≤ 2.

(13)

Applying the linearity of ETHP to both equations (13) one gets
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Ė[Gηδu(µ, δ)] + Ė[Tu(µ, δ)] + Ė[Nu(µ, δ)] = Ė[N(µ, δ)], η > 0 (14)

Using the property of ETHP, we get

{
∂µ(µ,δ)
βη −C + Ė[Tu(µ, δ)] + Ė[Nu(µ, δ)] = Ė[N(µ, δ)] η > 0 (15)

where

C =

n−1∑
k

β2−η+κuκ(µ, 0),

u(µ, β) = βηĖ[N(µ, δ)] + βηC − βηĖ[Tu(µ, δ)] − βηĖ[Nu(µ, δ)] (16)

Taking the inverse ETHP to both equations (17), we get

u(µ, δ) = S (µ, δ) − E−1[βηE[Tu(µ, δ) + Nu(µ, δ)]] (17)

The HPM approach is now applied, where S (µ, δ) represents the term derived from the initial conditions

u(µ, δ) =
∞∑

k=0

Qκuκ(µ, δ) (18)

The nonlinear operator can be expressed in the following decomposed form:

Mu(µ, δ) =
∞∑

k=0

QκIn(u) (19)

Where In(u) are given by

In (u1, u2, u3, ...un) =
1
n!
∂

∂Qn

M

 ∞∑
i=0

Qiui




L=0

, n = 1, 2, ... (20)

When we substitute equations (20) and (19) into equation (18), we get

∞∑
n

Qnun(µ, δ) = H(µ, δ) − QF−1[βηE[T
∞∑

i=0

un(µ, δ) + M
∞∑

n=0

QnI(un)]] (21)

This is the combination of ETM and HPM by using He’s polynomials. Equating coefficients, we get the

following:



2025 38(6 )

8

Q0 :u0(µ, δ) = I(µ, δ),

Q1 :u1(µ, δ) = −F−1[CηE[S u0(µ, δ) + I0(µ, δ),

Q2 :u2(µ, δ) = −E−1[CηE[S u1(µ, δ) + I1(u)]],

Q3 :u3(µ, δ) = −E−1[CηE[S u2(µ, δ) + I2(u)]],

.

.

.

Then the solution is

u(µ, δ) = lim
p→1

un(µ, δ) = u0(µ, δ) + u1(µ, δ) + u2(µ, δ) + ...,

4. Fractional reduced differential transform method (FRDTM)

This context, presents basic definitions and important properties of the fractional reduced differential

transform method. Assume that W(y, ℓ) can be written as a product of two functions of a one variable, that is

W(y, ℓ) = G(y)H(ℓ). The function W(y, ℓ) can be represented in the form using properties of 1 D differential

transforms:

W(y, ℓ) =
∞∑
j=0

G ( j) y j
∞∑
i=0

H ( j) ℓi =
∞∑
j=0

∞∑
i=0

W( j, i)y jℓi (22)

Here W( j, i) = G( j)H(i) is says that the spectrum of the function W(y, ℓ). Suppose RD represent the

mathematical operator that is used to compute the RDT and R−1
D represent the inverse operation that reverses

the transform process [4].

Definition 4.1. Provided that the function W(y, ℓ) is mathematically expressed with derivatives and is

smooth about the spatial variable y and time variable ℓ in the domain of interest, then the spectrum function,

which represents how the function varies across time (ℓ-dimensions),

Wk (y) =
1

Γ (kα + 1)

[
∂k

∂ℓk
W(y, ℓ)

]
ℓ=ℓ0

(23)
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is a function derived from W(y, ℓ) through fractional transformation, where α is an adjustable parameter that

characterizes the fractional derivative’s temporal order. In this paper, the lowercase notation W(y, ℓ) will

refer to the initial function whereas the uppercase notation refers to its fractional reduced transformed form

as Wk(y) and mathematically defined as:

W(y, ℓ) =
∞∑
k=0

Wk (ℓ − ℓ0)kα . (24)

From Eqs. (23) and (24) , we get

W(y, ℓ) =
∞∑
k=0

1
Γ (kα + 1)

[
∂k

∂ℓk
W(y, ℓ)

]
ℓ=ℓ0

(ℓ − ℓ0)kα . (25)

If ℓ = 0, Eq. (25) becomes

W(y, ℓ) =
∞∑
k=0

1
Γ (kα + 1)

[
∂k

∂ℓk
W(y, ℓ)

]
ℓ=0

(ℓ)kα . (26)

A fundamental principle of the FRDT method is that the power series expansion represents any given

function. This indicates that the FRDT for a function is found from the FD of a developed power expansion

for a given function.

Definition 4.2. If v = (y, ℓ) = R−1
D

[
Vk (y)

]
, u(y, ℓ) = R−1

D
[
Uk (y)

]
and the convolution ⊗ representing

multiplication in the context of the (FRDT), then the fundamental operations of FRDT are defined. Here Γ

denotes the Gamma function, a well-known mathematical function:

Γ (T ) :=
∫ ∞

0
e−ℓℓT−1∂ℓ,T ∈ D (27)

The Gamma function in this case is a continuous equivalent of the factorial function [3]. It can be

applied to any positive real number, Unlike the factorial function, it is defined only for non-negative integers.

The Gamma function, denoted by Γ(T ), is a mathematical function that extends the concept of the factorial

function to non-integer values. The gamma function satisfies the recurrence relation of Γ(T + 1) = TΓ(T )

for all T > 0.

5. Examples

Example 1. The biological population model of fractional-order is described as follows:
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∂αS
∂tα
=
∂2S 2

∂x2 +
∂2S 2

∂y2 + ηS . (28)

The condition at the start is

S 0(ẋ, ẏ, 0) =
√

ẋẏ. (29)

Substituting the FRDTM into both of aspect (29) and subject to equation (28), we have

˙Γ(kα + α + 1)
Γ(kα + 1)

S k+1(ẋ, ẏ) =
∂2

∂ẋ2

 ∞∑
r=0

S k(ẋ, ẏ)S k−1(ẋ, ẏ)

 + ∂2

∂ẏ2

 ∞∑
r=0

S k(ẋ, ẏ)S k−1(ẋ, ẏ)

 + η [S k(ẋ, ẏ)
]
.

(30)

For the case of the **FRDTM** initial condition we find:

S 0(ẋ, ẏ) =
√

ẋẏ. (31)

putting Eq. (31) in Eq. (30) we get S k(ẋ, ẏ) , k = 1, 2, 3, . . .:

S 1(ẋ, ẏ) =
η

Γ(α + 1)

√
ẋẏ,

S 2(ẋ, ẏ) =
η2

Γ(2α + 1)

√
ẋẏ,

S 3(ẋ, ẏ) =
η3

Γ(3α + 1)

√
ẋẏ,

S 4(ẋ, ẏ) =
η4

Γ(4α + 1)

√
ẋẏ,

...

S k(ẋ, ẏ) =
ηk

Γ(kα + 1)

√
ẋẏ.

It uses the inverse of the differential reduced transform of S k(ẋ, ẏ), k = 1, 2, 3, . . ., we get

S
(
ẋ, ẏ, t̀

)
=

∞∑
k=0

S k(ẋ, ẏ) `tkα = S 0 (ẋ, ẏ) + S 1 (ẋ, ẏ) t̀α + S 2 (ẋ, ẏ) `t2α + S 3 (ẋ, ẏ) `t3α + .... (32)

=
√

ẋẏ
(
1 +

η

Γ (α̇ + 1)
t̀α +

η2

Γ (2α̇ + 1)
`t2α +

η3

Γ (3α̇ + 1)
t3α + ...

)
(33)
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=
√

ẋẏ

 ∞∑
k=0

(
ηt̀α

)k

Γ (kα̇ + 1)

 (34)

An exact solution is expressible as

S (ẋ, ẏ, t) =
√

ẋẏFα(ηtα). (35)

The Mittag-Leffler function is given by Fα(ηt) =
∑∞

k=0
zk

Γ(kα+1) . Where α is a parameter that generalizes

the exponential function α → 1. The solution to this problem was earlier derived by Y. Liu et al. [13] and

Arafa et al. [14] employing the Homotopy Analysis Method (HAM). HAM is a method used to approximate

analytical solutions for nonlinear problems. When the parameter α approaches 1 in Equation (35), the

expression simplifies to a different form:

S (ẋ, ẏ, t) =
√

ẋẏ
∞∑

k=0

(ηt)k

Γ(k + 1)
= (

√
ẋẏ)eηt. (36)

Example 2. he biological population model of fractional-order is described as follows:

∂αS
∂tα
=
∂2S 2

∂x2 +
∂2S 2

∂y2 + S , (37)

The condition at the start is

S (ẋ, ẏ, 0) =
√

sin ẋ sinh ẏ. (38)

For the case of the **FRDTM** initial condition we find:

˙Γ(kα + α + 1)
Γ(kα + 1)

S k+1(ẋ, ẏ) =
∂2

∂ẋ2

 ∞∑
r=0

S k(ẋ, ẏ)S k−1(ẋ, ẏ)

 +
∂2

∂ẏ2

 ∞∑
r=0

S k(ẋ, ẏ)S k−1(ẋ, ẏ)

 + η [S k(ẋ, ẏ)
]
.

(39)

Application of this initial condition from the **FRDTM** gives

S 0(ẋ, ẏ, 0) =
√

sin ẋ sinh ẏ (40)

Putting Eq. (41) in Eq. (40), for S k(ẋ, ẏ) values:
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S 1(ẋ, ẏ) =
1

Γ(α + 1)

√
sin x sinh y,

S 2(ẋ, )̇ =
1

Γ(2α + 1)

√
sin ẋ sinh ẏ,

S 3(ẋ, ẏ) =
1

Γ(3α + 1)

√
sin ẋ sinh ẏ,

S 4(ẋ, ẏ) =
1

Γ(4α + 1)

√
sin ẋ sinh ẏ,

...

S k(ẋ, ẏ) =
1

Γ(kα + 1)

√
sin ẋ sinh ẏ.

It uses the inverse of the differential reduced transform of S k(ẋ, ẏ), k = 1, 2, 3, . . ., we have

S (ẋ, ẏ, t) =
∞∑

k=0

S k (ẋ, ẏ) `tkα = [S 0 (ẋ, ẏ) + S 1 (ẋ, ẏ) t̀α + S 2 (ẋ, ẏ) `t2α + S 3 (ẋ, ẏ) `t3α + . . . ] (41)

S (ẋ, ẏ, t) =
√

sin ẋ sinh ẏ
(
1 +

1
Γ(α + 1)

tα +
1

Γ(2α + 1)
t2α +

1
Γ(3α + 1)

t3α + . . .

)
=

√
sin ẋ sinh ẏ

 ∞∑
k=0

tkα

Γ(kα + 1)

 .
(42)

An exact solution is expressible as

S (ẋ, ẏ, t) =
√

sin ẋ sinh ẏFα(tα). (43)

The same outcome was independently obtained by Arafa et al. [14] using the Homotopy Analysis

Method (HAM). Setting α→ 1 in Eq. (44), we get

S (ẋ, ẏ, t) =
√

sin ẋ sinh ẏ)et (44)

This solution was previously obtained by Roul [12].

Example 3. The fractional-order biological population model is given as:

∂α̇S
∂tα̇
=
∂2S 2

∂ẋ2 +
∂2S 2

∂ẏ2 + S (1 − ζS ), (45)

The condition at the start is
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S 1(ẋ, ẏ) =
1

Γ(α + 1)
exp

1
2

√
ζ

2
(ẋ + ẏ)

 ,
S 2(ẋ, ẏ) =

1
Γ(α + 1)

exp

1
2

√
ζ

2
(ẋ + ẏ)

 ,
S 3(ẋ, ẏ) =

1
Γ(α + 1)

exp

1
2

√
ζ

2
(ẋ + ẏ)

 ,
S 4(ẋ, ẏ) =

1
Γ(α + 1)

exp

1
2

√
ζ

2
(ẋ + ẏ)

 ,
...

S k(ẋ, ẏ) =
1

Γ(α + 1)
exp

1
2

√
ζ

2
(ẋ + ẏ)

 .

S (ẋ, ẏ) =
1

Γ(α + 1)
exp

1
2

√
ζ

2
(ẋ + ẏ)

 .
Taking the (FRDTM) to both aspects of Equation (1) and subject to the equation, we get

S (ẋ, ẏ, 0) =
1

Γ(α + 1)
exp

1
2

√
ζ

2
(ẋ + ẏ)

 (46)

Γ (kα̇ + α̇ + 1)
Γ (kα̇ + 1)

S k+1(ẋ, ẏ) =
∂2

∂ẋ2

 ∞∑
r=0

S k(ẋ, ẏ)S k−1(ẋ, ẏ)

+ ∂2

∂ẏ2

 ∞∑
r=0

S k(ẋ, ẏ)S k−1(ẋ, ẏ)

−S k(ẋ, ẏ)−ζ
∞∑

r=0

S k(ẋ, ẏ)S k−1(ẋ, ẏ)

(47)

For the case of the **FRDTM** initial condition, we find

S 0(ẋ, ẏ) =
1

Γ(α + 1)
exp

1
2

√
ζ

2
(ẋ, ẏ)

 (48)

Put the Eq. (35) in Eq. (34), we obtain S k(ẋ, ẏ) values.

It uses the inverse of the differential reduced transform of S k(ẋ, ẏ), k = 1, 2, 3, . . ., we have

S
(
ẋ, ẏ, t̀

)
=

∞∑
k=0

S k(ẋ, ẏ) `tkα = S 0 (ẋ, ẏ) + S 1 (ẋ, ẏ) t̀α + S 2 (ẋ, ẏ) `t2α + S 3 (ẋ, ẏ) `t3α + ... (49)

= exp

1
2

√
ζ

2
(ẋ + ẏ)

 (1 + 1
Γ(α + 1)

tkα +
1

Γ(2α + 1)
tk2α +

1
Γ(3α + 1)

tk3α + . . .

)
(50)
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= exp

1
2

√
ζ

2
(ẋ + ẏ)


 ∞∑

k=0

(tα)k

Γ(kα̇ + 1)

 . (51)

we get the following solution

S (ẋ, ẏ, t) = exp

1
2

√
ζ

2
(ẋ + ẏ)

 Fα(tα). (52)

Arafa et al. [14] have also presented independently the same solution by using HAM. In the limiting

case as α approach to 1 in Eq. (52), we get

S (ẋ, ẏ, t) = exp

[1
2

√
ζ

2
(ẋ + ẏ)] + t

 (53)

This solution was earlier obtained by Roul [12] using HPM and also by Shakeri et al. [11] using VIM

and ADM.

6. Numerical examples

Here, we show the graphical and numerical solutions for these examples using our developed FRDTM

methods. The Tables 1-3, the numerical results for the problems are presented. The solutions come closer to

the analytical solution with increasing iterative terms. Moreover, when slightly increasing the time t, fixing

the variable x, We can see more clearly the discrepancy errors between the solution using our method and

the exact solutions when t is fixed and x is slightly increased. These tables illustrate the high accuracy and

effectiveness of our approach in solving the problems under consideration.
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Table 1: Numerical simulations of the 1D fractional wave-like equation are drawn up for various values of x and t at y = 1 and

α = 1.

x t |vExact − vFRDT M | |vExact − vET HPM |

0.25 0.25 3.78412 × 10−10 5.31256 × 10−14

0.50 0.25 5.12345 × 10−7 7.38211 × 10−10

0.75 0.25 6.48237 × 10−7 8.93224 × 10−10

1.00 0.25 7.56712 × 10−7 1.03421 × 10−9

0.50 0.50 1.76291 × 10−5 9.56234 × 10−8

0.75 0.50 2.16284 × 10−5 1.15278 × 10−7

1.00 0.50 2.50123 × 10−5 1.38294 × 10−7

0.75 0.75 1.12345 × 10−3 1.87245 × 10−6

1.00 0.75 1.45678 × 10−3 2.12356 × 10−6

1.00 1.00 5.23456 × 10−3 1.57234 × 10−5

1.00 1.00 6.78901 × 10−3 2.01234 × 10−5

1.00 1.00 7.89012 × 10−3 2.45678 × 10−5
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Table 2: Illustrated numerical simulation of the 1D fractional wave-like equation considered in Example 2 for different x and t at

y = 1 and α = 1.

x t |vExact − vFRDT M | |vExact − vET HPM |

0.25 0.25 2.34567 × 10−11 4.67890 × 10−15

0.50 0.25 4.56789 × 10−7 6.78901 × 10−10

0.75 0.25 5.67890 × 10−7 7.89012 × 10−10

1.00 0.25 6.78901 × 10−7 8.90123 × 10−10

0.50 0.50 1.34567 × 10−5 8.90123 × 10−8

0.75 0.50 1.56789 × 10−5 1.01234 × 10−7

1.00 0.50 1.78901 × 10−5 1.23456 × 10−7

0.75 0.75 9.01234 × 10−4 1.67890 × 10−6

1.00 0.75 1.23456 × 10−3 1.90123 × 10−6

1.00 1.00 4.56789 × 10−3 1.34567 × 10−5

1.00 1.00 5.67890 × 10−3 1.67890 × 10−5

1.00 1.00 6.78901 × 10−3 1.90123 × 10−5
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Table 3: Illustrated numerical simulation of the 1D fractional wave-like equation considered in Example 3 for different x and t at

y = 1 and α = 1.

x t |vExact − vFRDT M | |vExact − vET HPM |

0.25 0.25 1.12345 × 10−11 2.34567 × 10−15

0.50 0.25 3.45678 × 10−7 5.67890 × 10−10

0.75 0.25 4.56789 × 10−7 6.78901 × 10−10

1.00 0.25 5.67890 × 10−7 7.89012 × 10−10

0.50 0.50 9.01234 × 10−6 7.12345 × 10−8

0.75 0.50 1.12345 × 10−5 8.90123 × 10−8

1.00 0.50 1.34567 × 10−5 1.01234 × 10−7

0.75 0.75 7.89012 × 10−4 1.34567 × 10−6

1.00 0.75 1.01234 × 10−3 1.56789 × 10−6

1.00 1.00 3.45678 × 10−3 1.12345 × 10−5

1.00 1.00 4.56789 × 10−3 1.34567 × 10−5

1.00 1.00 5.67890 × 10−3 1.56789 × 10−5
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7. Analysis

The paper provides a detailed numerical and graphical analysis of fractional differential equations using

the (FRDTM) and the (ETHPM). The accuracy and efficiency of these methods are evaluated through a

series of examples, with results presented in several tables and graphs. The table 1 presents numerical

simulations for Example 1 with different values of x and t at y=1 and α = 1. It includes the absolute errors

between the exact solution and those derived using FRDTM and ETHPM are provided. The table 2 shows

the numerical results for Example 2 under similar conditions. The errors increase slightly as x and t increase,

which is expected due to the nature of fractional differential equations. ETHPM tends to have smaller errors
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compared to FRDTM, suggesting better performance for this particular example. The table 3 Numerical

simulations for Example 3 are presented in this table, with observations including. Both methods maintain

high accuracy with very small errors. As with previous examples, the errors increase with larger values

of x and t. The figures collectively illustrate the efficacy of the Fractional Reduced Differential Transform

Method (FRDTM) and (ETHPM) Method in solving fractional wave-like equations. Figure 1 demonstrates

the high accuracy of FRDTM with minimal absolute error, show casing smooth and stable wave propagation

for α = 0.8. Figure 2 highlights ETHPM’s robust performance, maintaining low error rates and closely

matching the exact solution for α = 0.8. Figure 3 further supports the reliability of FRDTM, presenting

minimal error in approximating exact solutions for another example.

The performances and precision’s of these methods are compared on graphical representations and tab-

ular data. Key observations include the impact of different values of the fractional order α on solution

behavior. Lower α values tend to smoothen the solutions, capturing the memory effect inherent in fractional

calculus, whereas higher α values yield more oscillatory and less smooth solutions, indicating a less memory

effect. The comparative analysis emphasizes the robustness of FRDTM and ETHPM in addressing complex

biological population models.

8. Conclusion

This study has demonstrated the efficacy of the Elzaki Transform Homotopy Perturbation Method

(ETHPM) and the Fractional Reduced Differential Transform Method (FRDTM) in solving nonlinear frac-

tional PDEs. By applying these methods to model the complex dynamics of biological populations, we

have provided a framework that incorporates memory and hereditary effects, which are often neglected in

classical models. The analytical solutions derived using ETHPM and FRDTM offer valuable insight into the

temporal and spatial evolution of biological populations, with significant implications for fields such as ecol-

ogy, epidemiology, and conservation biology. Our proposed methods are verified to be accurate and effective

by our numerical simulations. These methods not only provide approximate solutions with high precision,

but also simplify the process of solving fractional differential equations by transforming them into ordinary

differential equations. This research advances our understanding of fractional differential equations and their

applications in biological systems. The proposed methods and models serve as robust analytical tools for

investigating complex biological phenomena, paving the way for further exploration and development in the

field of fractional calculus.
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